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Quasi-Heyting Algebras: A New Class of Lattices
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Quasi-Heyting algebras (QHAs) generalize both the Heyting algebras (HAs) of
intuitionistic logic and the orthomodular lattices (OMLs) of quantum logic. As
in HAs, negation is a Galois connection, which expresses abandonment of the
law of the excluded middle, and as in OMLs, incompatibili ty of propositions is
expressed by departures from distributivity. Formulating an equational definition
of QHAs leads to generalizations of familiar operations. QHAs are the truth-
value objects of a generalization of toposes. So far, this development has aimed
to provide foundations of logic and model theory suitable for addressing computer
science problems, but they also appear applicable as formulations of the logic
of some types of scientific measurement. Many properties of OMLs are likely
to have generalizations to QHAs.

1. INTRODUCTION

The development of QHAs began with the observation that the process

of pasting Boolean algebras (BAs) so that they would be the blocks of an

orthomodular lattice (OML) could be generalized to pasting HAs.

A convenient source of finite examples was available, since finite HAs

are the open-set lattices of topologies on finite sets. It was easy to observe

that as OML pasting is an amalgamated coproduct in which isomorphic

sections are identified; analogous amalgamated coproducts of finite HAs

exist, using sections in which all relative pseudocomplements agree, as well

as meets, joins, 0, and 1.

This conclusion implies that pasting by isomorphic substructures could

be applied to a wide range of types of lattices and algebras, but raises the

question whether there would be any value in doing so beyond the satisfaction

of curiosity in exploring generalizations of the OML pasting process. For
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the case of pasting HAs it was eventually recognized that if the result Q
were a lattice, it would have two properties:

1. The HAs pasted to form Q would be a block structure that would

express incompatible operations, as in OMLs.

2. The negation operation would be weakened from an orthocomple-

mentation to a Galois connection, representing a constructive system
without the law of the excluded middle, as in intuitionism (i.e.,
Ø a Ú a # 1, for a P Q).

Incompatibility of operations is seen both in quantum mechanics and
in thermodynamically irreversible systems, such as living organisms and

many inorganic systems. In particular, incompatibility arises in several aspects

of computation, including both the assignment process in imperative lan-

guages, in which previous memory contents are destroyed, and in plausible,

but incompatible extensions of a knowledge base in artificial intelligence.

Hence, this new class of lattices opens the possibility of reasoning about
computation in a way not imagined before in computer science. They may

also be applicable to some aspects of the logic of experimentation in natural

science. It has recently been observed that many QHAs are members of the

class of difference algebras, but attention has primarily been restricted to

lattices to take advantage of the author’ s previous experience with OMLs

(Miller, 1993). The correspondence between QHAs and OMLs is so close
that many of the theorems known about OMLs seem likely to extend or

generalize to QHAs.

2. AN ALGEBRAIC DEFINITION FOR QHAs

In order not to be restricted to lattices formed by pasting a known

collection of HAs together, an algebraic definition was developed by making

analogies to some aspects of both HAs and OMLs. Recall first that in an

HA H the relative pseudocomplementation operation Þ is defined for each

a P H by treating H as a category in which the morphisms are defined by
the order on H and making the mappings a Ù : H ® H and a Þ :

H ® H endofunctors on H that are left and right adjoint to each other,

respectively, so that for any x, b P H, a Ù x # b iff x # a Þ b. Recall also

that in an OML O the compatibility relation C between any a, b P O is

encoded in the Sasaki projection function, f a(b) : 5 (b Ú a8) Ù a, so that a
C b iff f a(b) 5 a Ù b. These observations led to the following definition.

Definition 1. A quasi-Heyting algebra Q is a bounded lattice with
additional mappings a Þ , f a( ): Q ® Q for each a P Q such that for

x, b P Q:

1. f a(x) # b iff x # a Þ b

2. a Ù b # f a(b) # a
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3. a Ù b # a Þ b
4. a Ù b 5 (a Þ b) Ù f b(a)

As in an OML, we use the mapping f a to define compatibility: a C b iff
f a(b) 5 a Ù b.

Thus, the definition of a Sasaki projection function in a QHA extends the

adjointness between the meet and the relative pseudocomplement mappings in

an HA. As in an HA, we define Ø a : 5 a Þ 0. Condition 4 enforces the
symmetry of the compatibility relation, which holds in OMLs. Proposition

1 follows immediately from Definition 1.

Proposition 1. In any QHA Q, a C a Þ b; and a Þ b 5 a Þ (a Ù b).

However, it is not immediately evident that if a lattice P results from

pasting a set of HAs H i (for i P I for an index set I ), then P satisfies the

definition of a QHA. First, the process of pasting on isomorphic sections

does not show how to evaluate a Þ b when there is no Hi such that a,b P
Hi , and, second, it does not refer to the Sasaki projections. Evidently, it is

consistent with Definition 1 first to extend the Þ connective to arbitrary a,b
P P by defining a Þ b : 5 a Þ (a Ù b), and then to define f a(b) as f a(b)

: 5 Ù {x P Q | b # a Þ x}, for P in which this meet always exists. Nevertheless,

some additional effort is needed to see that these definitions make a QHA
out of a lattice that is pasted collection of HAs supporting the Sasaki projection

definition, and the details will appear in Miller (n.d.).

Definition 1 makes an HA of each maximal subalgebra of mutually

compatible elements of a QHA, providing the desired analogy with decompos-

ing an OML into Boolean blocks. Then it is immediate that an HA is a QHA

in which all pairs of elements are compatible. Likewise, an OML O satisfies
Definition 1 when the QHA operations on O are given by Ø a : 5 a8, f a(b)

: 5 a Ù (a8 Ú b), and a Þ b : 5 a8 Ú (a Ú b) for all a, b P O. Figure 1

illustrates the resulting containment relations.

Although QHAs have many similarities to OMLs, Zorn’ s Lemma implies

Theorem 1, which has no analogue for the more restricted classes in Fig. 1.

Theorem 1. Every bounded lattice L can be given a QHA structure in

which the blocks are the maximal chains of L.

This is because every bounded chain can be given a HA structure (Miller,

n.d.). If more than one QHA structure can be imposed on L, Theorem 1 gives

the ª finest,º in the sense of having the smallest blocks.

Fig. 1. Containment relations between lattice classes.
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3. COMPLETENESS FOR IMPLICATION IN QHA LOGIC

Kalmbach (1983, pp. 238±241) proves that among the five OML polyno-

mials in two variables (denoted a ® t b, 1 # i # 5) that satisfy a ® t b 5 1

iff a # b (the Birkhoff±von Neumann condition for an implication connective),

only the OML logic based on ® 1 is complete. In this section ® 1 is extended

to QHAs.
In most cases negation does not behave enough like orthocomplementa-

tion for Ø a simply to be substituted for a 8 in OML formulas to generalize

them to QHAs; this is true for ® 1. Thus, we generalize

a ® 1 b : 5 (a8 Ù b) Ú (a8 Ù b8) Ú (a Ù (a8 Ú b))

in OMLs by avoiding the use of Ø and defining

a Þ 1 b : 5 ((a Ú b) Ù (a Ú (b Þ a))) Þ f a(b)

in QHAs.

The completeness argument follows from observing that, at least in the

chain-finite case, the proof in Kalmbach (1983) is greatly simplified by

observing that in an OML Q, for any a, b P O, a Ù (a ® 1 b) 5 f a(b), but

a Ù (a ® i b) 5 a Ù b, for 2 # i # 5, so that applying modus ponens with
® 1 is the only way to prove all true propositions. Thus, Þ 1 is constructed

so that a Ù (a Þ 1 b) 5 f a(b) in QHAs. Again, details will appear in

Miller (n.d.).

4. HULLS

There is a further link between QHAs and OMLs. Priestley (1970a, b)

proved that every HA H has a Boolean hull: the smallest Boolean algebra

into which H can be injected, constructed from an ordered totally disconnected

topological space of functions on H. From this one can prove that there is

an OML hull O for any QHA Q such that the blocks of O are the hulls of

the blocks of Q, and the intersections of the blocks of O are the hulls of the
intersections of blocks of Q. Thus, many properties of QHAs follow by

inheritance from OML theory.

A simple example appears in Fig. 2, where the bottom square of the

cube represents pasting HAs H1 and H2 along H3 to form Q, and likewise

B1 and B2 are pasted along B3 to form O, so that the top and bottom squares
are pushouts, and all vertical arrows are maps into the respective hulls.

5. TRUTH-VALUE OBJECTS AND LAMINATIONS

Finally, Stout (1979) found a pasting process for toposes generalizing

the process for lattices, and it pastes truth-value objects. Stout’ s examples
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Fig. 2. Boolean and OML hulls of HAs and QHA.

pasted toposes with Boolean truth-value lattices to get objects with OML
truth-value lattices, but the general case gives QHA truth-value lattices. Hence

there is a possibility of developing new and more widely useful areas of

model theory.
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